Bithacks
Bithacks are optimization tricks that utilize information in bits and bit manipulation
to accomplish their tasks. Usually they work in a slightly non-obvious way, (the most famous being the fast inverse sqrt), and bit manipulation in general is harder on the 65c816. To that end here is a collection of some useful tricks.
Note: cycle counts are intended to be a worst case measure.
See also: Useful Code Snippets
Math Bithacks
Signed Division By 2
7 bytes / 8 cycles
inputs: A
outputs: A
CMP #$80 ROR BPL + ADC #$00 +
note: Rounds toward zero.
Arithmetic Shift Right
3 bytes / 4 cycles
inputs: A
outputs: A
CMP #$80 ROR
note: This is similar to division by 2, but rounds toward negative infinity.
Arithmetic Shift Right, multiple steps
6+n bytes / 6+2n cycles
inputs: A
outputs: A
; signed division by two, n times macro ASR_multi(n) LSR #<n> BIT.b #$80>><n> BEQ ?positive ORA.b #$FF00>><n> ; sign extension ?positive: endmacro ; -1 cycle and +n bytes, but must have N flag set before use macro ASR_multi(n) BMI ?negative LSR #<n> BRA ?end ?negative: LSR #<n> ORA.b #$FF00>><n> ; sign extension ?end: endmacro
Absolute Value
5 bytes / 6 cycles
inputs: A, (N Flag)
outputs: A
macro abs() BPL ?plus EOR #$FF INC ?plus: ; only 3 cycles if branch taken endmacro
Absolute Value (SEC)
4 bytes / 4 cycles
inputs: A, (Carry Set)
outputs: A
; compared to the branching version this is 1 byte smaller ; it's either 2 cycles slower/faster depending on branch taken EOR #$7F ; SEC ; the instant you add this in it becomes worse than the branching version SBC #$7F
Magnitude/Extents Check
~7 bytes / 12 cycles
inputs: A
outputs: (none)
; asks "Is [A] on the zero-side of value [X] or the far side?" ; good for magnitude checks, smaller *AND* faster than alternatives ; NOTE: in the event that it is exactly [X] it will have that value at branch ; doesn't need to be an indexed CMP but is most useful this way ; this can be used to combine the BPL and BMI checks for both signs into one SEC : SBC Extents,x EOR Extents,x BMI .zero_side .far_side: ; do things .zero_side: ; do things Extents: db -$23, $23
Sign Extend
13 bytes / 18 cycles
inputs: 8bit value in $10
outputs: A
REP #$20 LDA $10-1 ; load $10 into A high, and garbage in low AND #$FF00 ; discard garbage BPL + ORA #$00FF + XBA
Misc. Tricks
As this list grows tricks here will be consolidated into their own sections. Clever optimization tricks that aren't necessarily what someone might personally call a "bithack" are okay here as well!
Clear Low Byte of Accumulator
1 byte / 2 cycles
inputs: (none)
outputs: A
; "Trashes" A but clears low byte TDC
Direction/Facing As Index
4 bytes / 6 cycles
inputs: A
outputs: A
; Ever wonder why facing flags are 0=right and 1=left? This is why. It's incredibly cheap. ; The input here is specifically a signed speed, or similar value. ASL ROL AND #$01
Check N Conditions True
n+7 bytes / 2n+7 cycles
inputs: A
outputs: A
; You can test for multiple conditions being true (7 conditions true, at least 5 conditions, etc.) by simply using a counter and rounding to the next power of 2 and test if that bit is set. ; You can also test for "Less than N True", "More than N", etc. with variations. ; This is almost more a coding technique, but it's super helpful, so worth pointing out. ; It can allow you to re-arrange branches of code as independent blocks among other useful things. ; You can also use any RAM instead of A at a small cost. ; Example Test For 5 True Conditions: !Next_Highest_Power_of_2 = $08 !N_True_Target = $05 LDA #!Next_Highest_Power_of_2!-!N_True_Target-1 ; here we set up our rounding, the -1 isn't strictly necessary *most* of the time %TestSomeCondition() BCC + ; here we're going to say our test just returns carry set on true (but it could directly INC inside the code as well) INC + ; ... repeat the above 5 times for different tests N_True_Test: INC ; replace our -1 to bring us up to a full power of 2 if we had enough True AND #!Next_Highest_Power_of_2 BEQ .false .true: ; N Tests were True .false: ; Not exactly N tests were true
Skip Dead Code
1-2 bytes / 2-3 cycles
inputs: (none)
outputs: (none)
; If you need to skip one byte of dead code (due to a hijack or whatever reason) you can use: NOP ; 1 byte, 2 cycles ; But if you need to skip just 2 bytes the most efficient is: ; NOTE: many times WDM is used as a breakpoint for debugging so only do this as a final pass to speed up your code! WDM ; 2 bytes, 2 cycles ; Finally, if you need to skip a large amount of dead code you can use BRA/JMP instead ; JMP is as fast as BRA on the SNES CPU, but will be slightly slower on SA-1, and 1 cycle slower on SPC. So BRA is recommended ; (The extra byte used for JMP in this case doesn't matter) BRA + ; 2 bytes, 3 cycles ; dead code +
Check 3 Conditions
2 bytes / 2 cycles
inputs: A
outputs: (none)
; just the opcode as normal here (not counting the conditions), using any operand that's not immediate (#) ; it's worth noting that you can do up to 3 tests with a single opcode though! ; Just As A Reminder: the V & N flag are set by the *operand* to BIT not the result of the AND! BIT $00 BMI .bit7_set BVS .bit6_set BNE .bit5_set ; assuming #$20 is in $00 .bit7_set: .bit6_set: .bit5_set: